Comprehensive Experimental Analyses of Automotive Attack Surfaces

2018.9.27 Hyunki kim Hyunki Kim S. Checkoway, D. McCoy Roesner, and T. Kohno, "Comprehensity"

- R1 Shuxuan Zhou Kyong-Tak Cho ar Vulnerable", CCS'16
- R2 Byungkyu Lee M. Contag and G. "How They Did It: An Analysis of Emis

Authers: **Stephen Checkoway**, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, Stefan Savage, (UCSD) Karl Koscher, Alexei Czeskis, Franziska Roesner, and Tadayoshi Kohno (UW)

Written by Sanha Park

CAR HACKING JUST GOT REAL

Intro ↔ Jeep Cherokee hacked in 2015

Why can we attack?

Why can we attack?

Cars' system

ECU(Electronic Control Unit) :

– Ubiquitous computer controller

 ECU interconnection driven by safety, efficiency, and capability requirements
 But, also has some fatal shortcomings

Oakland 2010, they showed...

Safety-critical systems can be compromised

- Selectively enable/disable brakes
- Stop engine
- Control lights
- Owning one ECU = total compromise
- &ECUs can be reprogrammed (while driving!)

Limit: Need physical access

[Oakland'10] koscher et al. Experimental Security Analysis of a Modern Automobile.

Threat model

- Technical (theoretical) Capabilities
 - Capabilities in analyzing the system
 - Focuses on making technical capabilities realistic
- Operational (real-time) capabilities
 - Show how malicious payload is delivered
 - Attack vector
 - Indirect physical access
 - short-range wireless access
 - long-range wireless access

Indirect physical

- Definition:
 - Attacks over physical interfaces
 - Constrained: Adversary may not directly access the physical interfaces herself
- *****OBD(stands for On Board Diagnostic)

SAE J2534 Compliant Programming Interface

Port

Scanner

PassThru

Indirect physical

- Definition:
 - Attacks over physical interfaces
 - Constrained: Adversary may not directly access the physical interfaces herself
- Extends attack surface to the device

Short-range wireless

Definition: Attacks via short-range wireless communication (meters range or less)

Long-range wireless

- Definition: Attacks via long-rage wireless communication (miles, global-scale)
- Broadcast channel
 - Satellite Radio, GPS, RDS

Me	edia	Х	M	HD R	adio	DAB				
93.1	101.1	88.5	AM				LINKUD			
	PRESETS		BAND	TUNE	SEEK	SEEK HD				
4	5	6	FM		4					
Artist: Title:				//		93.1 FM				
HD-2:					1					
HD-3:	-									
4	93.1 FM									
	12;28	📀 6	в нр 🏾 🎽	i 💿 [L			

Satellite Radio

Long-range wireless

Definition: Attacks via long-rage wireless communication (miles, global-scale)

Addressable channel

Attack surfaces explored in depth

- Components we compromised
 - Indirect physical: Media player, OBDII
 - Short-range wireless: Bluetooth
 - Long-rage wireless: Cellular

Every attack vector leads to complete car compromise

Premise

No direct physical access

Already know how to deal with CAN signal

Recent made sedan, 2 same model

Overall methodology

- Extract device's firmware
 - Read memory out over the CAN bus (CarShark)
 - Desolder flash memory chips in ECUs
- Reverse engineering firmware
 - IDA Pro
 - Custom tools

Identify and test vulnerable code paths

Indirect physical: Media player attack

Code for ISO-9660 leads to Vulnerable : in a module that uploads firmware.

./usr/share/scripts/update/installer/system_module_check.lua

```
91
     local fname= string.format("%s/swdl.iso", os.getenv("USB_STICK")
or "/fs/usb0")
92
     local FLAGPOS=128
93
 94
       local f = io.open(fname, "rb")
95
       if f then
 96
          local r, e = f:seek("set", FLAGPOS)
          if r and (r == FLAGPOS) then
 97
98
             local x = f:read(1)
99
            if x then
             if x == "S" then
100
101
                   print("system module check: skip ISO integrity
check")
```

Indirect physical: Media player attack

Code for ISO-9660 leads to Vulnerable : in a module that uploads firmware

	Q	1	2	3	- 4-	-5	6	- 7	8	- 9.	A.	B	Ç	Q.	E	Ē	0123456789ABCDEF
0000h:	DC	BC	47	90	27	F6	20	93	33	EC	74	5A	8D	A5	E3	98	"Gœ"ö-";itZ.¥ā"
0010h:	B6	9F	BD	F7	C8	57	6B	89	C2	C7	6B	E7	BC	613	21	EA	1YH÷ÈWk%ÅÇkç4k!8
0020h:	96	DC	0C	DB	DD	F4	B9	9B	64	CE	8F	8B	2A	DO	8A	47	–Ü.ØÝô'>dĨ.<*ĐŠG
0030h:	2F	44	F7	D2	3F	45	06	4D	48	96	9E	6E	7D	7F	23	17	/D÷Ö?E.MH-žn}.#.
0040h:	49	C9	FE	D1	F1	22	A0	34	20	C6	D0	5E	DF	DD	Ε8	14	IÉþÑñ" 4 ÆÐ^BÝè.
0050h:	Δ6	A6	2B	08	B1	47	41	03	79	18	FO	8C	3D	E2	6D	BC	+.±GA.y.ðœ−âm4
0060h:	49	5D	AO	CE	$\mathbb{E}\mathbb{B}$	CE	F7	C7	8A	1E	Α5	68	FB	8E	ЗA	98	I] ÎëÎ÷ÇŠ.¥hûŽ: ⁻
0070h:	78	\mathbf{FE}	40	ΞÀ	10	4D	38	30	07	5A	BC	D4	Ξ8	в9	1D	34	xþ@8.M80.Z\6Ôè`.4
0080h:	53	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	S
0090h:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
OOAOh:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00B0h:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00C0h:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00DOh:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00E0h:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
OOFOh:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0100h:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0110h:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
A1 AA1	nn	66	00	nn	nn	nn	0.0	nn	0.0	nn	<i>n</i> n	nn	nn	00	nn	8.0	

Short-range wireless: OBDII

- PassThru device has no authentication method
- 1. Connect to same WiFi with device to get to CAN bus
- 2. Implant malicious code inside the device

Short-range wireless: Bluetooth attack

- Custom-built code contains vulnerability
 - Strcpy() bug \rightarrow execute arbitrary code(Bufferoverflow)
- 1. Using owner's smartphone as stepping-stone
 - Trojan Horse application
 - Check whether other party is telematics unit
 - \rightarrow if so it sends our attack payload
- 2. Can directly pair with Bluetooth undetectably
 - USRP software radio
 - MAC address ; 2ways to get
 - Brute force PIN ;10hrs per car

Short-range wireless: Bluetooth attack

Description e Error Packet	Payle
é Éreir	
Packet	
ersiin jes	40 01 01 00 20 02
Packet	
a finte	
Activit	
6 Error	
Packet	
Parent .	
edures_req	4E BF FE 0F 00 18 18 00 00
Packet	
Packet	
s firmer	
hi shak	
1	ichet Ichet

Long-range wireless: Cellular attack

1. Attack @ Lowest level of protocol stack

Use 1024bytes packet size

Maximum 100bytes packet

Car theft

- 1. Compromise car
- 2. Get Car's INFO (GPS...)
- 3. Unlock doors
- 4. Start engine
- 5. Bypass anti-theft

Surveillance

- Compromised car
- Continuously report GPS coordinates
- Stream audio recorded from the in-cabin mic
 - Detect voice (VAD)
 - Compress audio
 - Stream to remote computer
 - E.g.) Professor Yongdae Kim

- Stakeholders responding today:
 SAE, USCAR, US DOT
- Recommendation : lessons from the PC world
 - Avoid unsafe function
 - Remove unnecessary binaries e.g.) ftp/telnet/vi
 - ASLR (Address Space Layout Randomization)
 - Stack cookies
 - Limited inbound calls

Achieve excellence in automotive software security

Penetration testing	Replicate the steps a threat agent takes to find vulnerabilities, and receive clear guidance on how to eliminate them in your server-side applications and APIs.
Dynamic application security testing (DAST)	Identify security vulnerabilities while web applications are running, without the need for source code.
Mobile application security testing (MAST)	Find vulnerabilities regardless of where they exist, including in client-side code, server-side code, third-party libraries, and underlying mobile platforms.
Embedded application security testing (EAST)	Verify the functional and security performance of embedded systems, and identify vulnerabilities in the embedded software stack.
Software composition analysis (SCA)	Detect third-party open source components in source code and binaries. Track and remediate vulnerabilities during development and in containers in production. Identify third-party licenses, and set policies to avoid noncompliance.
Tools	Synopsys provides industry-leading tools for software composition analysis, static code analysis, fuzz testing and protocol testing, and interactive security testing.
Architecture and design	Security testing and threat modeling help you find architectural, design, and system defects and flaws.
Cloud security	Run applications securely in the Cloud.
Agile and CI/CD	Build security into modern agile SDLCs.
Training	Synopsys creates security training courses delivered as instructor-led, eLearning, and virtual classes.
Build Security In programs	Synopsys offers the BSIMM, the Maturity Action Plan, security metrics, and software security initiative programs.

MISR

DEKRA

Future work

- Developing new protocol alternative to CAN bus
- Research how to encrypt CAN message
- CAN monitoring system to catch external attack

Summary

Current autos have broad (and increasing) external attack surface

They demonstrated real attacks that compromised safety-critical systems

Industry and government are responsible

